绝对值求导(y等于x的绝对值求导)
令f(x)=|x|.
x<0时,f'(x)=-1;x>0时,f'(x)=1;x=0时,函数在改点不可导。也就是说这个函数的导函数是个分段函数,且定义域为(-∞,0)∪(0,+∞)。
绝对值函数并不属于我们熟悉的基本函数,所以第一步是要把绝对值函数化为我们熟悉的函数。x>=0时,f(x)=x;x<0时,f(x)=-x.
然后是求导的第一步,也是初学者最容易忽略的一步,判断函数的可导性,既连续性。判断的公式有点复杂,简而言之就是函数在某点上的左导数和右导数相等。x≠0时显然函数是可导的,需要判断的只有x=0这个点。求出函数的左导数为-1右导数为1,不相等,所以函数在该点不可导。
最后,分别对各段求导即可。
<h2>含有绝对值的函数如何求导?详细!h2>在该点处,分别求其左右导数,若左导数=右导数,即是该点导数;若至少有一个不存在,则该点导数不存在。
导数不存在有几种情况
1、函数在该点不连续,且该点是函数的第二类间断点。如y=tan(x),在x=π/2处不可导。
2、函数在该点连续,但在该点的左右导数不相等。如Y=|X|,在x=0处连续,在x处的左导数为-1,右导数为1,不相等(可导函数必须光滑),函数在x=0不可导。
导数和极限的关系
1、极限只是一个数:x趋向于x0的极限=f(x0)。而导数则是瞬时变化率,是函数在该点x0的斜率。导数比极限多了一个表达“过程”的部分。
2、一个函数在某一点的导数描述了这个函数在这一点附近的变化率。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”。
3、导数在一个点处的极限或者函数在一个点的空心邻域内是否可导,与导数在一个点处的函数值或者函数在一个点处的导数不同,导数在一个点有函数值,则函数可导。